Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael Bolte^a* and Alexander Faber^b

^aInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Physikalische und Theoretische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.054 wR factor = 0.148 Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dihydridotetrakis(4-picoline-*N*)silicon dibromide chloroform hexasolvate

The title compound, $[SiH_2(C_6H_7N)_4]Br_2\cdot 6CHCl_3$ or $C_{24}H_{30}N_4Si^{2+}\cdot 2Br^-\cdot 6CHCl_3$, contains a hexacoordinated Si atom located on a crystallographic centre of inversion. The coordination of the Si atom can be described as a slightly distorted octahedron, with the 4-picoline ligands in the equatorial plane and the two H atoms occupying axial positions. The title compound is isomorphous with its analogue where the Br⁻ ions are substituted by Cl⁻ ions.

Received 23 January 2001 Accepted 31 January 2001 Online 13 February 2001

Comment

The title compound, (I), is isomorphous with its analogue where the Br^- ions are substituted by Cl^- ions (Stumpf & Bolte, 2001).

Experimental

The title compound was prepared as described by Faber (2000).

Crystal data

$C_{24}H_{30}N_4Si^{2+}\cdot 2Br^{-}\cdot 6CHCl_3$	Z = 1
$M_r = 1278.64$	$D_x = 1.588 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 9.506 (1) Å	Cell parameters from 8192
b = 11.337(2) Å	reflections
c = 12.960 (2) Å	$\theta = 1-25^{\circ}$
$\alpha = 92.28 (1)^{\circ}$	$\mu = 2.47 \text{ mm}^{-1}$
$\beta = 104.06 (1)^{\circ}$	T = 173 (2) K
$\gamma = 98.20 (1)^{\circ}$	Needle, colourless
V = 1337.0 (3) Å ³	$0.6 \times 0.4 \times 0.3 \text{ mm}$
Data collection	
Siemens CCD three-circle diffract-	$R_{\rm int} = 0.027$
ometer	$\theta_{\rm max} = 25.0^{\circ}$
ω scans	$h = -11 \rightarrow 8$
Absorption correction: empirical	$k = -13 \rightarrow 13$
(SADABS; Sheldrick, 1996)	$l = -15 \rightarrow 15$
$T_{\rm min} = 0.290, T_{\rm max} = 0.477$	98 standard reflections
15 431 measured reflections	frequency: 1440 min
4721 independent reflections	intensity decay: none
3954 reflections with $I > 2\sigma(I)$	· · ·

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.148$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0746P)^{2} + 3.3546P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
 S = 1.03 4721 reflections 256 parameters H atoms treated by a mixture of independent and constrained refinement 	$(\Delta/\sigma)_{\text{max}} = 0.020$ $\Delta\rho_{\text{max}} = 1.98 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -0.75 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Si1-N1	1.958 (4)	Si1-N2	1.959 (5)
H1SI-Si1-N2	91 (2)	N1-Si1-N2	89.79 (17)

All H atoms bonded to C atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters $[U(H) = 1.5U_{eq}(C_{methyl}) \text{ or } U(H) = 1.2U_{eq}(C)]$ using a riding model with C-H(aromatic) = 0.95, C-H(methyl) = 0.98 or C-H(tertiary) = 1.00 Å. The methyl groups attached to the aromatic rings were allowed to rotate about their local threefold axis. The H atom bonded to Si was refined isotropically applying a restraint of 1.40 (1) Å to the Si-H distance

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL*97).

References

Faber, A. (2000). PhD thesis, University of Frankfurt, Germany.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus.* Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stumpf, T. & Bolte, M. (2001). Acta Cryst. E57, o209-211.

A perspective view of the cation of (I) with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

A perspective view of the anion and the solvent molecules of (I) with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.